China best DN 65 Grooved Flexible Coupling with FM UL Certificate in Fire System Project

Product Description

Product Description

A grooved reducing flex joint is a mechanical pipe joint that allows pipes of different diameters to be joined while providing a degree of flexibility. These couplings consist of 2 grooved end fittings and a flexible gasket or sleeve that is installed on the pipe. Grooves on the pipe ends provide a strong mechanical connection when the fitting is tightened.

Application:
Grooved reducing flexible joints are commonly used in a variety of piping systems such as:

CHINAMFG (Heating, Ventilation, and Air Conditioning): Used to connect ducts in CHINAMFG systems where flexibility may be required due to thermal expansion and contraction.

Fire Protection Systems: Typically used in fire sprinkler systems to connect pipes of different sizes while allowing for movement due to temperature changes.

Water and Wastewater Systems: For water and drainage systems where flexibility and ease of installation are important.

Industrial Piping: Used in industrial applications where grooved coupling systems are favored for their simplicity and speed of installation.

Material standards for groove couplings:
Material standards for grooved couplings are often set by industry organizations and standards bodies. The material used for grooved joints is usually ductile iron, but stainless steel and other materials can also be used, depending on the application and specific requirements.

Standards governing grooved couplings include:

ANSI/AWWA C606 - Groove and Shoulder Joints for Ductile Iron Pressure Piping and Fittings: This standard covers groove and shoulder joints for ductile iron pressure piping, fittings, and other components.

ASTM A536 - Standard Specification for Ductile Iron Castings: This standard covers compositional, mechanical, and other requirements for ductile iron castings.

NFPA 13 - Standard for Installation of Sprinkler Systems: This standard, published by the National Fire Protection Association, provides guidance for the installation of sprinkler systems, including the use of grooved joints.

Nominal Size
mm/in
Pipe O.D

mm

Working
Pressure
PSI/Mpa
Dimensions      mm Bolt Size Certificate
L H W NO.-Size

mm

65X50/212X2 73X60 300/2.07 143 102 45 M10X65 FM  UL
65X50/30DX2 76X60 300/2.07 143 102 45 M10X65 FM  UL
80X50/3X2 89X60 300/2.07 163 118 47 M12X70 FMUL
80X65/3X212 89X73 300/2.07 163 118 47 M12X70 FMUL
100X50/4X2 114X60 300/2.07 200 150 50 M12X70 FMUL
100X65/4X212 114X73 300/2.07 200 150 50 M12X70 FM  UL
100X65/4X3OD 114X76 300/2.07 200 150 50 M12X70 FM  UL
100X80/4X3 114X89 300/2.07 200 150 50 M12X70 FMUL
150X100/612ODX4 165X114 300/2.07 270 200 51 M16X85 FM  UL
150X80/6X3 168X89 300/2.07 270 200 51 M16X85 FMUL
150X100/6X4 168X114 300/2.07 270 200 51 M16X85 FM  UL
200X150/8X612OD 219X165 300/2.07 335 260 63 M20X110 FM  UL
200X150/8X6 219X168 300/2.07 335 260 63 M20X110 FMUL

Quality Control:

what is the rigid and flexible Coupling difference?

Coupling play an important role in connecting pipe segments to prevent leaks caused by damaged or damaged joints while maintaining the integrity of the pipe in the process. It is a very suitable fitting for the pipe and pipe industry. Most pipe installations require multiple pipe sections to be joined together or cut to facilitate changing direction and traversing obstacles. A fitting is a concise pipe or pipe. It has a socket or female thread at 1 or both ends. Fitting allows 2 pipes or pipes of the same or different sizes to be joined together to form a long pipe.

Flexible coupling
Flexible couplings are designed to transmit torque while allowing some radial, axial and angular misalignment. They can accommodate angular misalignment of up to a few degrees and some parallel misalignment. Elastic couplings allow for some angular misalignment and axial movement, meaning they can be used to create smooth bends and absorb thermal expansion contractions in piping systems. In some cases, the use of elastic couplings can even exclude conventional expansion joints, loops and other expansion devices from the system entirely. When assembling a stretch rubber gasket, the gasket is slightly smaller than the pipe diameter at both pipe ends and produces the first seal. The 2 halves of the coupling are then placed around the washers that adapt to them. The coupling halves are bolted together to further improve the seal.

FAQ

1. What is the minimum quantity of the order? 
Answer: The purchase volume of mixed products is 4 tons

2. How long is the delivery time of the order?
Answer: The delivery time for general orders is about 30 days. If the order is urgent and we have stock, around 7 days.

3. What payment methods do you accept?
Answer: We accept payment terms such as TT, L/C, DP, Western Union, Paypal, etc.

4. Where is your departure port of shipment? Is it possible to deliver to the designated warehouse?
Answer: The port of departure of our goods is generally ZheJiang Port or HangZhou Port. We can transport the goods to designated warehouses, such as HangZhou, HangZhou, etc.

5. What certificates do your products have?
Answer: Our products have FM/UL certificates, and we cooperate with third-party quality inspection certification before the factory, such as SGS,TUV

6.What are the series of your products?
Answer: Our products are divided into heavy series, medium series and light series according to different markets and standards. In order to buy more competitive products for you, please communicate your purchasing needs with the salesperson.

7. Do product packaging cartons and labels support customization?
Answer: Packaging cartons and labels can be customized according to customer requirements.

8.Does the purchased product support customization?
Answer: The product supports customization, but there are purchase quantity requirements and mold costs. For details, please consult the salesperson.

9.What are the packaging methods of the product?
Answer: The packaging of the product includes carton packaging, pallet packaging, wooden box packaging, and woven bag packaging.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

What are the key features to look for when purchasing a flexible coupling?

When purchasing a flexible coupling, several key features should be considered to ensure it meets the specific requirements of the application and provides reliable performance. The following are the key features to look for:

  • 1. Type of Coupling: There are different types of flexible couplings available, such as jaw couplings, beam couplings, bellows couplings, disc couplings, and more. Each type has its advantages and limitations, so choosing the right type depends on factors like misalignment compensation needed, torque capacity, and application requirements.
  • 2. Material: The material of the coupling is crucial for its durability and performance. Common materials include stainless steel, aluminum, steel, and various elastomers. Select a material that can withstand the environmental conditions, loads, and temperature ranges of the application.
  • 3. Size and Dimensions: Ensure that the coupling's size and dimensions match the shaft sizes and available space in the system. Oversized or undersized couplings may lead to inefficiencies, misalignment, and reduced performance.
  • 4. Torque Rating: Consider the maximum torque the coupling can handle to ensure it can transmit the required power without failure or damage.
  • 5. Speed Rating: Check the coupling's maximum rotational speed capability to ensure it can handle the desired operating speed without issues.
  • 6. Misalignment Compensation: Different couplings offer varying degrees of misalignment compensation, such as angular, parallel, and axial misalignment. Choose a coupling that can accommodate the expected misalignments in the system.
  • 7. Backlash: For precision applications, consider couplings with minimal or zero-backlash to prevent motion inaccuracies and ensure precise positioning.
  • 8. Operating Environment: Assess the environmental conditions, including temperature, humidity, dust, and chemical exposure, and select a coupling with suitable resistance to these factors.
  • 9. Maintenance: Decide whether maintenance-free couplings or those requiring periodic lubrication align better with the application's requirements and maintenance schedule.
  • 10. Electrical Isolation: If required, choose couplings with electrical isolation features to prevent current flow between connected shafts.
  • 11. Dynamic Behavior: Evaluate the coupling's dynamic performance, including resonance and damping characteristics, to ensure smooth operation under various loads and speeds.
  • 12. Application Compatibility: Verify that the selected coupling is suitable for the specific application, such as pumps, compressors, robotics, automation, or other industrial processes.

Summary: When purchasing a flexible coupling, consider factors such as the type of coupling, material, size, torque rating, speed rating, misalignment compensation, backlash, operating environment, maintenance, electrical isolation, dynamic behavior, and application compatibility. Careful consideration of these features will ensure that the coupling meets the demands of the application, provides reliable performance, and contributes to the overall efficiency of the mechanical system.

flexible coupling

How does a flexible coupling contribute to reducing maintenance and downtime costs?

A flexible coupling plays a significant role in reducing maintenance and downtime costs in mechanical systems. Here are the ways in which it achieves this:

  • Misalignment Compensation: Flexible couplings can accommodate both angular and parallel misalignments between shafts. By absorbing and compensating for misalignment, they reduce wear and stress on connected equipment, minimizing the risk of premature failures and the need for frequent adjustments.
  • Vibration Damping: Flexible couplings dampen vibrations and shock loads in the system. This not only protects the connected components from excessive wear but also reduces the likelihood of damage to bearings, seals, and other critical parts, which would otherwise require frequent replacement or repair.
  • Protection Against Shock Loads: In applications where sudden starts, stops, or load fluctuations occur, flexible couplings can absorb and dissipate some of the shock loads, preventing potential damage to machinery. This feature extends the equipment's lifespan and minimizes unplanned downtime.
  • Longevity of Components: By reducing stress and wear on connected components, flexible couplings contribute to their longevity. Components such as bearings, shafts, and gears are subject to less strain and fatigue, resulting in extended service intervals and reduced replacement costs.
  • Easy Installation and Maintenance: Flexible couplings are relatively easy to install and require minimal maintenance. Routine inspections to check for wear or damage can be done without significant downtime, allowing proactive maintenance to address any issues before they escalate.
  • Adaptability to Operating Conditions: Flexible couplings can handle variations in operating conditions, such as temperature fluctuations and different types of loads. Their ability to accommodate changing conditions reduces the need for frequent adjustments or component replacements due to environmental factors.
  • Reduced Downtime during Maintenance: In the event of maintenance or equipment repairs, flexible couplings can be quickly disconnected and reconnected, minimizing the downtime required for servicing. This quick replacement reduces production losses and improves overall system efficiency.

Overall, the use of flexible couplings in mechanical systems promotes reliability, extends the life of equipment, and helps prevent costly breakdowns. By reducing maintenance and downtime costs, flexible couplings contribute to improved productivity and profitability for industrial operations.

flexible coupling

Are there any limitations or disadvantages of using flexible couplings?

While flexible couplings offer numerous advantages, they do come with some limitations and disadvantages that should be considered when selecting them for specific applications. Here are some of the common limitations and disadvantages of using flexible couplings:

  • Torsional Stiffness: Flexible couplings provide some level of torsional flexibility, which is advantageous in many applications. However, in systems that require high precision and minimal angular deflection, the inherent flexibility of the coupling may not be suitable. In such cases, a rigid coupling may be more appropriate.
  • Limitation in High-Torque Applications: While some flexible couplings can handle moderate to high torque levels, they may not be as well-suited for extremely high-torque applications. In such cases, specialized couplings, such as gear couplings, may be required to handle the high torque demands.
  • Temperature Limitations: The performance of certain flexible coupling materials, especially elastomers and plastics, may be affected by extreme temperature conditions. High temperatures can lead to premature wear and reduced lifespan of the coupling, while low temperatures may result in reduced flexibility and potential brittleness.
  • Chemical Compatibility: Certain flexible coupling materials may not be compatible with certain chemicals or substances present in the application's environment. Exposure to chemicals can cause degradation or corrosion of the coupling material, affecting its performance and lifespan.
  • Installation and Alignment: Flexible couplings require proper installation and alignment to function effectively. If not installed correctly, misalignment issues may persist, leading to premature wear and reduced performance. Aligning the shafts accurately can be time-consuming and may require specialized equipment and expertise.
  • Cost: In some cases, flexible couplings may be more expensive than rigid couplings due to their more complex design and use of specialized materials. However, the cost difference is often justified by the benefits they offer in terms of misalignment compensation and vibration damping.
  • Service Life: The service life of a flexible coupling can vary depending on the application's conditions and the quality of the coupling. Regular maintenance and timely replacement of worn or damaged parts are essential to ensure the coupling's longevity and prevent unexpected failures.

Despite these limitations, flexible couplings remain highly valuable components in a wide range of applications, providing efficient torque transmission and compensating for misalignment. Proper selection, installation, and maintenance can help mitigate many of the disadvantages associated with flexible couplings, ensuring their reliable and long-lasting performance in various mechanical systems.

China best DN 65 Grooved Flexible Coupling with FM UL Certificate in Fire System Project  China best DN 65 Grooved Flexible Coupling with FM UL Certificate in Fire System Project
editor by CX 2024-05-17

flexible shaft coupling

As one of leading flexible shaft coupling manufacturers, suppliers and exporters of products, We offer flexible shaft coupling and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of worm flexible shaft coupling

Recent Posts