China Custom 2′ ′ 500psi Stainless Steel Grooved Flexible Coupling in Stock

Product Description

Stainless Steel Grooved Pipe Coupling 2'' DN50mm 600psi (4.0Mpa)
 

 1. Available Size: 
  * 
3/4'' - 12'' ( DN20-DN300mm) 

 2. Maximum Working Pressure : 
 * 600 CZPT ( 40 bar) 
 *  working pressure dependent on material, wall thickness and size of pipe .

3. Application: 
*  
Provides a flexible pipe joint which allows for expansion, contraction and deflection
*  This product joints standard Sch 40S cut grooved pipe  
*  Suit for pipeline medium including cold water, hot water, rare acid, Oil-free air and chemical

4. Material 
  

   Body Material : SS304, SS316, SS316L, SS CE8MN, SS Duplex 2204, SS Duplex 2507 
   Rubber Sealing : EPDM 
   Bolt & Nut :  SS304, SS316 

5.  Dimension Sheet : 
                                                                                                                                                       
    
                                                                                                                           
           Typical for all sizes 

 

Model S30 Stainless Steel Flexible Coupling
Nominal Size Pipe O.D Working Pressure  Pipe End Separation Coupling Dimensions Coupling Bolts
X Y Z Qty Size
mm/inch (mm/inch) (psi/bar) (mm/inch) mm/inch mm/inch mm/inch pcs mm
20           3/4 26.9   1.050 600                          42  0-1.6                  0-0.06 47                   1.850 87                3.425 43              1.693 2 M10x40
25                       1 32            1.260 500            35 0-1.6                  0-0.06 53             2.087 90    3.543 43     1.693 2 M10x45
32               1 1/4 38     1.496 500              35 0-1.6                  0-0.06 58          2.283 94        3.700 44        1.732 2 M10x45
32               1 1/4 42.4   1.660 500             35 0-1.6                  0-0.06 62      2.441 106  4.173 44        1.732 2 M10x45
40                  1 1/2 48.3   1.900 500            35 0-1.6                  0-0.06 67      2.638 106   4.173 43     1.693 2 M10x45
50                      2 57     2.244 500            35 0-1.6                  0-0.06 77       3.031 116   4.567 43    1.693 2 M10x50
50               2 60.3   2.375 500            35 0-1.6                  0-0.06 78            3.071 117    4.606 43     1.693 2 M10x50
65               2 1/2 73        2.875 500             35 0-1.6                  0-0.06 94         3.700 134   5.275 44        1.732 2 M10x50
65               2 1/2 76.1       3.000 500             35 0-1.6                  0-0.06 94         3.700 134   5.275 44        1.732 2 M10x50
80               3 88.9     3.500 500             35 0-1.6                  0-0.06 110         4.330 150   5.905 45       1.771 2 M10x50
100               4 108     4.250 450           31 0-3.2                 0-0.13 135         5.315 184   7.244 47     1.850 2 M12x60
100               4 114   4.500 450           31 0-3.2                 0-0.13 139        5.472 190  7.480 48    1.890 2 M12x60
125               5 133   5.250 400           28 0-3.2                 0-0.13 164        6.456 215   8.465 48    1.890 2 M12x60
125               5 141.3   5.563 400           28 0-3.2                 0-0.13 168       6.614 215   8.465 48    1.890 2 M12x60
150              6 159   6.259 350           25 0-3.2                 0-0.13 190      7.480 240  9.448 49    1.929 2 M12x70
150              6 168.3  6.625 350           25 0-3.2                 0-0.13 198      7.795 246     9.685 49    1.929 2 M12x70
200             8 219.1  8.625 350           25 0-3.2                 0-0.13 253  9.961 318    12.519 57    2.244 2 M12x70
250           10 273   10.750 300           21 0-3.2                 0-0.13 315   12.401 396  15.590 59         2.322 2 M20x110
300            12 323.9  12.750 300           21 0-3.2                 0-0.13 372  14.645 452  17.795 60      2.362 2 M20x110

 

flexible coupling

How do you install and align a flexible coupling properly to ensure optimal performance?

Proper installation and alignment of a flexible coupling are essential to ensure its optimal performance and longevity. Incorrect installation can lead to premature wear, increased vibrations, and potential equipment failure. Below are the steps to install and align a flexible coupling properly:

1. Pre-Installation Inspection:

Before installation, inspect the flexible coupling and its components for any visible damage or defects. Check that the coupling's size and specifications match the application requirements. Ensure that the shafts and equipment connected to the coupling are clean and free from debris.

2. Shaft Preparation:

Prepare the shafts by removing any oil, grease, or contaminants from the surfaces that will come into contact with the coupling. Ensure that the shaft ends are smooth and free from burrs that could affect the fit of the coupling.

3. Coupling Hub Installation:

Slide the coupling hubs onto the shafts, ensuring they are positioned securely and evenly on each shaft. Use a lubricant recommended by the manufacturer to facilitate the installation and ensure a proper fit.

4. Alignment:

Proper alignment is critical for the performance and longevity of the flexible coupling. Align the shafts by checking both angular and parallel misalignment. Utilize precision alignment tools, such as dial indicators or laser alignment systems, to achieve accurate alignment. Follow the manufacturer's alignment specifications and tolerance limits.

5. Tightening Fasteners:

Once the shafts are properly aligned, tighten the coupling's fasteners to the manufacturer's recommended torque values. Gradually tighten the fasteners in a cross pattern to ensure even distribution of the load on the coupling hubs. Avoid over-tightening, as it may cause distortion or damage to the coupling.

6. Run-Out Check:

After installation, perform a run-out check to verify that the coupling's rotating components are balanced and aligned. Excessive run-out can lead to vibrations and reduce the coupling's performance. If significant run-out is detected, recheck the alignment and address any issues that may be causing it.

7. Lubrication:

Ensure that the flexible coupling is adequately lubricated, following the manufacturer's recommendations. Proper lubrication reduces friction and wear, enhancing the coupling's efficiency and reliability.

8. Periodic Inspection and Maintenance:

Regularly inspect the flexible coupling for signs of wear, misalignment, or damage. Address any issues promptly to prevent further problems. Depending on the coupling type and application, scheduled maintenance may include re-greasing, re-alignment, or replacing worn components.

Summary:

Proper installation and alignment are crucial for ensuring the optimal performance and longevity of a flexible coupling. Following the manufacturer's guidelines, inspecting the components, achieving accurate alignment, and using the appropriate lubrication are key steps in the installation process. Regular inspection and maintenance help to identify and address potential issues, ensuring the coupling continues to operate smoothly and efficiently in the mechanical system.

flexible coupling

Can flexible couplings be used in power generation equipment, such as turbines and generators?

Yes, flexible couplings are commonly used in power generation equipment, including turbines and generators. These critical components of power generation systems require reliable and efficient shaft connections to transfer power from the prime mover (e.g., steam turbine, gas turbine, or internal combustion engine) to the electricity generator.

Flexible couplings play a vital role in power generation equipment for the following reasons:

  • Misalignment Compensation: Power generation machinery often experiences misalignment due to factors like thermal expansion, settling, and foundation shifts. Flexible couplings can accommodate these misalignments, reducing the stress on shafts and minimizing wear on connected components.
  • Vibration Dampening: Turbines and generators can generate significant vibrations during operation. Flexible couplings help dampen these vibrations, reducing the risk of resonance and excessive mechanical stress on the system.
  • Torsional Shock Absorption: Power generation equipment may encounter torsional shocks during startup and shutdown processes. Flexible couplings can absorb and dissipate these shocks, protecting the entire drivetrain from damage.
  • Isolation of High Torque Loads: Some power generation systems may have torque fluctuations during operation. Flexible couplings can isolate these fluctuations, preventing them from propagating to other components.
  • Electrical Isolation: In certain cases, flexible couplings with non-metallic elements can provide electrical isolation, preventing the transmission of electrical currents between shafts.

Power generation applications impose specific requirements on flexible couplings, such as high torque capacity, robust construction, and resistance to environmental factors like temperature and humidity. Different types of flexible couplings, including elastomeric, metallic, and composite couplings, are available to meet the varying demands of power generation equipment.

When selecting a flexible coupling for power generation equipment, engineers must consider factors such as the type of prime mover, torque and speed requirements, operating conditions, and the specific application's environmental challenges. Consulting with coupling manufacturers and following their engineering recommendations can help ensure the appropriate coupling is chosen for each power generation system.

flexible coupling

How do you select the appropriate flexible coupling for a specific application?

Choosing the right flexible coupling for a specific application requires careful consideration of various factors to ensure optimal performance, reliability, and longevity. Here are the key steps to select the appropriate flexible coupling:

  1. Application Requirements: Understand the specific requirements of the application, including torque and speed specifications, misalignment conditions, operating environment (e.g., temperature, humidity, and presence of corrosive substances), and space limitations.
  2. Torque Capacity: Determine the maximum torque that the coupling needs to transmit. Choose a flexible coupling with a torque rating that exceeds the application's requirements to ensure a safety margin and prevent premature failure.
  3. Misalignment Compensation: Consider the type and magnitude of misalignment that the coupling needs to accommodate. Different coupling designs offer varying degrees of misalignment compensation. Select a coupling that can handle the expected misalignment in the system.
  4. Vibration Damping: If the application involves significant vibrations, choose a flexible coupling with good damping properties to reduce vibration transmission to connected equipment and improve system stability.
  5. Environmental Factors: Take into account the environmental conditions in which the coupling will operate. For harsh environments, consider couplings made from corrosion-resistant materials.
  6. Torsional Stiffness: Depending on the application's requirements, decide on the desired torsional stiffness of the coupling. Some applications may require high torsional stiffness for precise motion control, while others may benefit from a more flexible coupling for shock absorption.
  7. Cost and Life-Cycle Considerations: Evaluate the overall cost-effectiveness of the coupling over its expected life cycle. Consider factors such as initial cost, maintenance requirements, and potential downtime costs associated with coupling replacement.
  8. Manufacturer Recommendations: Consult coupling manufacturers and their technical specifications to ensure the selected coupling is suitable for the intended application.
  9. Installation and Maintenance: Ensure that the selected flexible coupling is compatible with the equipment and shaft sizes. Follow the manufacturer's installation guidelines and recommended maintenance practices to maximize the coupling's performance and longevity.

By following these steps and carefully evaluating the application's requirements, you can select the most appropriate flexible coupling for your specific needs. The right coupling choice will lead to improved system performance, reduced wear on equipment, and enhanced overall reliability in various mechanical systems and rotating machinery.

China Custom 2′ ′ 500psi Stainless Steel Grooved Flexible Coupling in Stock  China Custom 2′ ′ 500psi Stainless Steel Grooved Flexible Coupling in Stock
editor by CX 2023-08-10

flexible shaft coupling

As one of leading flexible shaft coupling manufacturers, suppliers and exporters of products, We offer flexible shaft coupling and many other products.

Please contact us for details.

Mail:sales@flexible-shaft-coupling.com

Manufacturer supplier exporter of worm flexible shaft coupling

Recent Posts